Landscape Zonation, benefit functions and target-based planning: Unifying reserve selection strategies
نویسنده
چکیده
The most widespread reserve selection strategy is target-based planning, as specified under the framework of systematic conservation planning. Targets are given for the representation levels of biodiversity features, and site selection algorithms are employed to either meet the targets with least cost (the minimum set formulation) or to maximize the number of targets met with a given resource (maximum coverage). Benefit functions are another recent approach to reserve selection. In the benefit function framework the objective is to maximize the value of the reserve network, however value is defined. In one benefit function formulation value is a sum over species-specific values, and species-specific value is an increasing function of representation. This benefit function approach is computationally convenient, but because it allows free tradeoffs between species, it essentially makes the assumption that species are acting as surrogates, or samples from a larger regional species pool. The Zonation algorithm is a recent computational method that produces a hierarchy of conservation priority through the landscape. This hierarchy is produced via iterative removal of selection units (cells) using the criterion of least marginal loss of conservation value to decide which cell to remove next. The first variant of Zonation, here called core-area Zonation, has a characteristic of emphasizing coreareas of all species. Here I separate the Zonation meta-algorithm from the cell removal rule, the definition of marginal loss of conservation value utilized inside the algorithm. I show how additive benefit functions and target-based planning can be implemented into the Zonation framework via the use of particular kinds of cell removal rules. The core-area, additive benefit function and targeting benefit function variants of Zonation have interesting conceptual differences in how they treat and trade off between species in the planning
منابع مشابه
The Value of Biodiversity in Reserve Selection: Representation, Species Weighting, and Benefit Functions
The limited availability of resources for conservation has led to the development of many quantitative methods for selecting reserves that aim to maximize the biodiversity value of reserve networks. In published analyses, species are often considered equal, although some are in much greater need of protection than others. Furthermore, representation is usually treated as a threshold: a species ...
متن کاملWhen do conservation planning methods deliver? Quantifying the consequences of uncertainty
The rapid global loss of biodiversity has led to a proliferation of systematic conservation planning methods. In spite of their utility and mathematical sophistication, these methods only provide approximate solutions to real-world problems where there is uncertainty and temporal change. The consequences of errors in these solutions are seldom characterized or addressed. We propose a conceptual...
متن کاملMethods for reserve selection: Interior point search
Spatial reserve design concerns the planning of biological reserves for conservation. Typical reserve selection formulations operate on a large set of landscape elements, which could be grid cells or irregular sites, and selection algorithms aim to select the set of sites that achieves biodiversity target levels with minimum cost. This study presents a completely different optimization approach...
متن کاملArea-based refinement for selection of reserve sites with the benefit-function approach.
Optimization of resource use is necessary for efficient conservation planning. Many reserve-selection algorithms aim to identify representative but inexpensive networks, which may lead to selecting small sites due to their lower costs and collectively higher species richness. Nevertheless, larger sites would be preferable regarding species' long-term persistence. An area-based refinement can be...
متن کاملAssessment of fine-scale resource selection and spatially explicit habitat suitability modelling for a re-introduced tiger (Panthera tigris) population in central India
Background Large carnivores influence ecosystem functions at various scales. Thus, their local extinction is not only a species-specific conservation concern, but also reflects on the overall habitat quality and ecosystem value. Species-habitat relationships at fine scale reflect the individuals' ability to procure resources and negotiate intraspecific competition. Such fine scale habitat choic...
متن کامل